Interfaces epistémicas de visualización e interpretación: una posible resistencia al mito de la agencia autónoma en la IA

Autores/as

DOI:

https://doi.org/10.34619/20hf-ury5

Palabras clave:

mitología de la IA , deep learning , agencia social , antropología digital, etnografía experimental

Resumen

Los estudios antropológicos sobre agencia y cognición han empleado marcos teóricos de codependencia y composición — entre humanos y no humanos — para explicar los procesos de producción técnica del conocimiento. En este contexto, se han desarrollado numerosos estudios etnográficos sobre las tecnologías digitales (Horst y Miller 2012; Geismar y Knox 2021) y, en particular, sobre la Inteligencia Artificial (IA) (Forsythe 2001; Suchman 2007), tanto en el contexto de su producción — con sus diseñadores y programadores —, como en el campo de su implementación — sobre sus usos y apropiaciones —. En cambio, como indican autoras como Pink (2021) o Drucker (2020), encontramos menos investigaciones que lleven estas teorías antropológicas al diseño de aquellas tecnologías que determinan nuestra actual ecología cognitiva, como es el caso del fenómeno del deep learning. Así, la relevancia de la investigación que aquí se presenta radica en la realización de una etnografía colaborativa — con un ingeniero de deep learning — que permitió diseñar dos interfaces experimentales de interacción humano-IA que ofrecen una posible resistencia al mito de agencia autónoma que caracteriza el discurso oficial de la IA; un habla mítica (Barthes 1957) que, como se argumentará a través de la descripción del trabajo etnográfico, no se corresponde con la acción de programar IA. Partiendo de este contexto, se presentará el método híbrido que orientó esta investigación — entre la práctica de programación de deep learning para visión artificial, las técnicas de interpretabilidad computacional, y el uso de estrategias artísticas —, metodología que permitió incorporar en el diseño de las interfaces el conocimiento etnográfico del trabajo de campo, donde destacan los conceptos antropológicos de agencia social (Gell 1998; Latour 1999) y user-maker (Ingold 2013).

Biografía del autor/a

Andrés Pachón, Universidad de Coímbra, Portugal

Andrés Pachón es doctorando en Antropología Social y Cultural en la Universidad de Coimbra con una beca de la Fundação para a Ciência e a Tecnologia. Licenciado en Bellas Artes por la Universidad Complutense de Madrid (2008), concluyó un Magister en Teoría y Práctica de las Artes Plásticas Contemporáneas en esa misma universidad (2009), así como un Master en Antropología Social y Cultural en la Universidad de Coimbra (2019). Con una larga trayectoria artística, colaborando con instituciones como el Museo Quai Branly de Paris, el Museo Nacional de Antropología de Madrid o el Archivo Fotográfico del Museo de Arte de Lima (Perú), en 2019 recibió una Beca Leonardo de la Fundación BBVA a Investigadores y Creadores Culturales, realizando un proyecto que sirvió de punto de partida para la investigación doctoral en curso, donde cruza la etnografía experimental con la práctica artística para desarrollar una antropología de la Inteligencia Artificial.

Citas

Annany, Mike, and Kate Crawford. 2016. “Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability.” New Media & Society 20 (3): 973-989. https://doi. org/10.1177/1461444816676645.

Apprich, Clemens. 2018. “Secret Agents. A psychoanalytic Critique of Artificial Intelligence and Machine Learning.” Digital Culture & Society 4 (1): 29-44. https://doi.org/10.14361/dcs-2018-0104.

Barthes, Roland. 2012. Mitologías. Traducido por Héctor Schmucler. Madrid: Editorial Biblioteca Nueva. Carter, Shan, Zan Armostron, Ludwing Schubert, Ian Johnson, and Chris Olah. 2019. “Exploring Neural

Networks with Activation Atlases.” Distill. https://doi.org/10.23915/distill.00015.

Deleuze, Gilles, y Felix Guattari. 1985. El Anti Edipo: capitalismo y esquizofrenia. Traducido por Francisco Monge. Barcelona: Editorial Planeta.

Drucker, Johanna. 2020. Visualization and Interpretation. Cambridge: The MIT Press.

Dyson, George. 2015. La catedral de Turing: los orígenes del universo digital. Traducido por Francisco José Ramos Mena. Barcelona: Penguin Random House.

Forty, Adrien. 1986. Objects of Desire: design and society since 1750. London: Thames & Hudson.

Griffiths, Catherinne. 2018. “Visual Tactics Toward an Ethical Debugging.” Digital Culture & Society 4(1): 217-

https://doi.org/10.14361/dcs-2018-0113.

Gell, Alfred. 2016. Arte y agencia: una teoría antropológica. Traducido por Ramsés Cabrera Olivares. Buenos Aires: SB.

. 2006. The Art of Anthropology: essays and diagrams. New York: Berg.

Geismar, Haidy, and Hannah Knox, eds. 2021. Digital Anthropology. 2nd ed. New York: Routledge.

Holmes, Douglas, and George E. Marcus. 2008. “Collaboration Today and the Re-Imagination of the Classic Scene of Fieldwork Encounter.” Collaborative Anthropologies 1 (1): 81-101. https://doi.org/10.1353/ cla.0.0003.

Horst, Heather A. 2016. “Being in Fieldwork: collaboration, digital media and ethnographic practice.” In

eFieldnotes: the makings of anthropology in a digital world, edited by Roger Sanjek and Susan Tratner, 153-

University of Pennsylvania Press.

Hutchins, Edwin. 1995. Cognition in the Wild. Massachusetts: The MIT Press.

Ingold, Tim. 2013. Making: Anthropology, Archaeology, Art and Architecture. London: Routledge.

Larson, Erik J. 2022. El mito de la Inteligencia Artificial: por qué las máquinas no pueden pensar como nosotros lo hacemos. Traducido por Milo J. Krmpoti. España: Shackleton Books, S.L.

Latour, Bruno. 1986. “Visualisation and Cognition: thinking with eyes and hands.” In Knowledge and Society Studies in the Sociology of Culture Past and Present, vol. 6, edited by H. Kuklick and E. Long, 1-40. Jai Press.

. 2001. La esperanza de Pandora: ensayos sobre la realidad de los estudios de la ciencia. Traducido por Tomás Fernández Aúz. Barcelona: Gedisa, S.A.

Latour, Bruno, and Steve Woolgar. 1986. Laboratory Life: the construction of scientific facts. Princeton, New Jersey: Princeton University Press.

Lindsay, Grace. 2022. Models of the Mind: How physics, engineering and mathematics have shaped our understanding of the brain. London: Bloomsbury.

Magnet, Shoshana A. 2011. When Biometrics Fail: Gender, Race, and the Technology of Identity. Durham: Duke University Press.

Marcus, George E. 1995. “Ethnography in/of the World System: the emergence of multi-sited ethnography.”

Annual Review of Anthropology 24: 95-117. https://doi.org/10.1146/annurev.an.24.100195.000523.

Monin, Monica. 2018. “Unconventional Classifiers and Anti-social Machine Intelligences: Artists Creating Spaces of Contestation and Sensibilities of Difference Across Human-Machine Networks.” Digital Culture & Society 4 (1): 227-237. https://doi.org/10.25969/mediarep/13534.

Pink, Sarah. 2021. “Digital Futures Anthropology.” In Digital Anthropology,edited by H. Geismar and H. Knox, 2nd ed., 307-324. New York: Routledge.

Pink, Sarah, and Juan Francisco Salazar. 2017. “Anthropologies and Futures: setting the agenda.” En Anthropologies and Futures: researching emerging and uncertain worlds, edited by Juan Francisco Salazar, Sarah Pink, Andrew Irving and Johannes Sjöberg, 3-22. London: Bloomsbury.

Preston, John, and Mark Bishop, eds. 2002.Views into the Chinese Room: new essays on Searle and artificial intelligence. New York: Oxford University Press.

Searle, John. 1984. Minds, Brains and Science. Cambridge: Harvard University Press.

Sekula, Allan. 1986. “The Body and the Archive.” October 39: 3-64. https://doi.org/10.2307/778312. Suchman, Lucy. 2007. Human-Machine Reconfigurations: Plans and Situated Actions, 2nd ed. New York:

Cambridge University Press.

Verbeek, Peter-Paul. 2006. “Materializing Morality. Design Ethics and Technological Mediation.” Science, Technology, & Human Values 31 (3): 361-380. http://www.jstor.org/stable/29733944.

Descargas

Publicado

2024-11-29

Cómo citar

Pachón, A. (2024). Interfaces epistémicas de visualización e interpretación: una posible resistencia al mito de la agencia autónoma en la IA. Revista De Comunicação E Linguagens, (60-61), 91–113. https://doi.org/10.34619/20hf-ury5